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Abstract
Finite cyclic quantum state machines (FCQSMs) are characterized by free
actions of finite cyclic groups upon odd-dimensional spheres. This provides
for a covering space representation for all such machines. FCQSM simulation,
as well as simple, quotient, and split FCQSMs are defined within this context.
The notions of dynamical and process symmetries for FCQSMs are introduced
and it is shown that although all FCQSMs obey a weak version of a FCQSM
symmetry principle, only those which adhere to a strong version of this principle
can simulate special FCQSMs defined by their dynamical symmetries. Finally,
a simulation complexity index and an induced topological complexity index
are defined for FCQSMs and an order relation is developed in terms of these
indices which serves as a more precise statement of the weak version of the
FCQSM symmetry principle. These indices are also shown to be related to
FCQSMs which do not conform to the strong version of the FCQSM symmetry
principle.

PACS numbers: 03.65.Bz, 02.40.Re, 89.70.+c

1. Introduction

Since the discovery of Shor’s quantum factoring algorithm [1] much research has been devoted
to the theoretical illumination of the properties and limitations of the quantum computer.
Soon after Shor’s announcement of his breakthrough discovery, Lloyd [2] identified linear
algebraic conditions necessary for quantum computation and briefly discussed the evolution
of cyclic quantum computers in this context. More recently, Malyshev [3], Moore et al [4], and
Gudder [5] have studied quantum grammars and quantum automata. There, Gudder introduced
the notion of a quantum state machine (QSM) using a traditional state and transition function
formalism that was appropriately modified for quantum mechanical systems. Gudder’s QSM
is a simple quantum mechanical system which has no input or output and evolves from one
state to another in equally spaced time steps.
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The purpose of this paper is to study the properties of finite cyclic quantum state machines
(FCQSMs). These machines are the special class of QSMs which evolve in finite-dimensional
Hilbert spaces and return to their initial states after a finite number of equally spaced
evolutionary time steps. This research differs from its predecessors in that it is performed
from an algebraic topological perspective. In particular, FCQSMs are characterized in terms
of the covering spaces that result from the free actions of finite cyclic groups upon odd-
dimensional spheres. This characterization enables a natural definition for FCQSM simulation,
as well as for simple, quotient, and split FCQSMs. In addition, it provides a basis for
discussing the symmetries of FCQSMs in terms of the automorphism group for the acting
cyclic group (i.e. the FCQSMs group of dynamical symmetries) and the group of covering
space homeomorphisms (i.e. the FCQSMs group of process symmetries). These symmetries
are shown to obey a weak version of a FCQSM symmetry principle. It is also shown that
not all FCQSMs adhere to a strong version of the FCQSM symmetry principle. Only those
machines which obey a strong version of this principle can simulate FCQSMs defined by their
groups of dynamical symmetries. Finally, the notions of simulation complexity and of induced
topological complexity are introduced and their relationships to both versions of the FCQSM
symmetry principle are determined.

It should be mentioned that due to the range of mathematical concepts used here, it is not
practical to make this paper self-contained. Readers who are not familiar with certain of these
concepts are invited to consult any of the many excellent mathematics texts which treat them
(e.g. [6–11]).

2. A covering space model for FCQSMs

Consider a quantum system with normalized states |ψ〉 belonging to the (n + 1)-dimensional
Hilbert space Cn+1 and defined by the set H = {|ψ〉 ∈ Cn+1 : 〈ψ |ψ〉 = 1

}
, where C is the

set of complex numbers and n � 1. As is well known, the set of states H is homeomorphic
to the (2n + 1)-dimensional (unit) sphere S2n+1. Let f : H→ S2n+1 be this homeomorphism.
Also consider a unitary evolution operator Û (�t) on H for a fixed time step �t such that for
some positive integer m � 2 and any |ψ0〉 ∈ H: (i) Û k (�t) |ψ0〉 �= |ψ0〉 for 1 � k < m;
and (ii) Ûm (�t) |ψ0〉 = |ψ0〉. The sequential application of Û (�t) m times to |ψ0〉 produces
the following (closed) cycle of length m in H which represents the dynamic evolution of a
FCQSM in H:

|ψ0〉 Û→ |ψ1〉 Û→ |ψ2〉 Û→ · · · Û→ |ψm−1〉 Û→ |ψm〉 = |ψ0〉. (1)

Thus, in general, for k � 1,

Û k (�t) |ψ0〉 = Û kmodm (�t) |ψ0〉 = |ψkmodm〉.
Since Û (�t) is an element of the group of all unitary transformations on H, it generates

the cyclic group 〈Û (�t)〉. Because Ûm (�t) |ψ0〉 = |ψ0〉 implies Ûm (�t) = Î , where Î is
the group identity operator, 〈Û (�t)〉 is a finite cyclic group of order m. Therefore, we have
shown the following:

Lemma 1. 〈Û (�t)〉 is a group that is isomorphic to the cyclic group Zm of order m.

The map θ : 〈Û (�t)〉×H→ H defined by θ
(
Û k (�t) , |ψ〉) = Û k (�t) |ψ〉 , 1 � k � m,

obviously describes the dynamics of FCQSMs discussed above. Note that there also exists a
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map ϕ = f ◦ θ ◦ (α × f )−1 such that the diagram

〈Û (�t)〉 ×H θ→ H
↓ (α × f ) ↓ f

Zm × S2n+1 ϕ→ S2n+1

commutes. Here α : 〈Û (�t)〉 → Zm is the group isomorphism of lemma 1. Since α and f
are bijective, then so is (α × f ) and its inverse (α × f )−1 exists. Thus, ϕ is equivalent to θ in
the sense that ϕ also describes the dynamics of FCQSMs because α, f , and (α × f ) merely
‘relabel’ group elements and states in a manner that preserves the group properties of 〈Û (�t)〉
and the topological properties of H. It is therefore useful to characterize the dynamics of
FCQSMs using only the properties of ϕ and refer to each such machine as an (m, n)-FCQSM.
Here m and n denote the order of Zm and dimension of S2n+1, respectively, and the machine is
said to be ‘defined by Zm’ (the role of ϕ is understood). This is the approach that is followed
in this paper.

Lemma 2. The map ϕ defines a continuous free left Zm -action on S2n+1.

Proof. This can be shown to be true by first observing that θ defines H as a 〈Û (�t)〉-
space because: (1) 〈Û (�t)〉 acts (from the left) on H (i.e. Ûm (�t) = Î is the identity
element for 〈Û (�t)〉 so that Î |ψ〉 = |ψ〉 for all |ψ〉 ∈ H; and for all |ψ〉 ∈ H and û,
v̂ ∈ 〈Û (�t)〉, û(v̂ |ψ〉) = (ûv̂) |ψ〉); and (2) θû (|ψ〉) ≡ θ(û, |ψ〉) = û |ψ〉 is continuous
for every û ∈ 〈Û (�t)〉 since H is of finite dimension and û is a bounded operator. By
definition, this action is a free action because Û k (�t) |ψ〉 �= |ψ〉 for all |ψ〉 ∈ H and all
Û k (�t) ∈ 〈Û (�t)〉, 1 � k � m− 1. Since ϕ preserves the group and topological properties
of θ , it follows that ϕ also defines S2n+1 as a Zm-space and that the associated action is also a
free action. �

Let S2n+1/Zm be the quotient space generated by the action ϕ and p : S2n+1 → S2n+1/Zm

be the induced canonical projection. The next theorem is a consequence of an additional
property of the action defined by ϕ.

Theorem 3. p : S2n+1 → S2n+1/Zm is a covering.

Proof. The assertion is true because the action defined by ϕ is a properly discontinuous action,
i.e. Zm is a finite group acting freely on the (compact) Hausdorff space S2n+1. �

This result provides a concise topological representation for an (m, n)-FCQSM. Every
point in the base space S2n+1/Zm represents a process cycle for the associated FCQSM. In
addition, the (necessarily continuous) map p provides an equivalence classification of states
according to the process cycle to which they belong. The (discrete) fibres Fx = p−1 (x) for
every process cycle x ∈ S2n+1/Zm are equipotent sets ofm points inS2n+1 which are the states of
the associated cycle given by (1). Observe that (m, 1)-FCQSMs are qubit machines, i.e. finite
cyclic processes in two-dimensional Hilbert spaces. It is noteworthy that base spaces S3/Zm

for qubit machines are represented by the classical Lens spaces of algebraic topology ([12–14]).
The following properties for S2n+1/Zm and S2n+1 are noted for future reference: (1) they

are path connected spaces; (2) they are connected spaces (because path connected implies
connected); and (3) they are locally path connected spaces (since they are both (2n + 1)-
manifolds). Also, it is well established that for n � 1, S2n+1 is a simply connected space
because it is path connected and π1(S

2n+1) ≈ 1, where π1(S
2n+1) is the fundamental group for

S2n+1 (the base point is suppressed for notational simplicity) and 1 denotes the trivial group
(‘≈’ means ‘is isomorphic to’). Thus, p : S2n+1 → S2n+1/Zm is a universal covering.
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3. Quotient machines, split machines, and FCQSM simulations

An (m, n)-FCQSM is said to simulate an (m′, n)-FCQSM (i.e. the (m, n)-FCQSM cycles
emulate those of the (m′, n)-FCQSM) if there exists a continuous surjective map r :
S2n+1/Zm′ → S2n+1/Zm such that the diagram

S2n+1

q

↙
p

↘
S2n+1/Zm′

r−→ S2n+1/Zm

(2)

commutes.

Theorem 4. Let M be a FCQSM defined by Zm. For every non-trivial subgroup of Zm there
is a FCQSM that is simulated by M.
Proof. It is known from the theory of covering spaces that the coverings of a base space are
classified by the subgroups of its fundamental group. Since S2n+1 is simply connected, then—
from the theory of covering spaces—π1(S

2n+1/Zm) ≈ Zm. If G is a non-trivial subgroup of
Zm, then it must be isomorphic to a cyclic group Zm′ because every non-trivial subgroup of a
cyclic group is also a cyclic group. Since S2n+1/Zm is connected, locally path connected, and
has a universal covering space, there exists a covering r : S2n+1/Zm′ → S2n+1/Zm. Because
p : S2n+1 → S2n+1/Zm is a universal covering, there also exists an (m′, n)-FCQSM defined by
G ≈ Zm′ which is the unique universal covering q : S2n+1 → S2n+1/Zm′ such thatp = r◦q. �

Simulations such as these are called (m, n) /(m′, n) simulations and M is said to be
(m′, n) capable (obviously every (m, n)-FCQSM is (m, n) capable and therefore simulates
itself). As an illustration of this result let M be a (4, n)-FCQSM. This machine is defined by
the group Z4 and G ≈ Z2 is a non-trivial proper subgroup of Z4. According to theorem 4, M
is (2, n) capable and therefore simulates a (2, n)-FCQSM via a (4, n) / (2, n) simulation so
that diagram (2) with m = 4 and m′ = 2 must commute.

The utility of the covering space representation and of diagram (2) can be seen by observing
that the fibre p−1 (x) for each process x ∈ S2n+1/Z4 contains the 4 states in the associated
process cycle and the fibre q−1 (y) for each process y ∈ S2n+1/Z2 contains the 2 states in
its process cycle. Since r : S2n+1/Z2 → S2n+1/Z4 is also a covering, the fibre r−1 (x) for
each process x ∈ S2n+1/Z4 contains m/m′ = 4/2 = 2 process cycles for the (2, n)-FCQSM.
The commutativity of diagram (2) identifies the 4 states of these two (2, n)-FCQSM process
cycles with the same 4 states in the single (4, n)-FCQSM process cycle for every process
cycle x ∈ S2n+1/Z4. Thus, the set of states for each 4 state cycle is partitioned so that two
(2, n)-FCQSM processes are required to visit the same 4 states that each (4, n)-FCQSM visits
in a single process cycle. This is the meaning of (m, n) /(m′, n) simulation: the states of the
process cycles for (m, n)-FCQSMs ‘geometrically register’ the states of the process cycles
for (m′, n)-FCQSMs such that each (m, n)-FCQSM cycle ‘registers’ m/m′ (m′, n)-FCQSM
cycles. This notion is easily quantified as a simulation ratio σ defined as the group index

σ = [Zm : Zm′ ] ≡ |Zm|
|Zm′ | =

m

m′
(3)

where |G| is the order of group G (recall Lagrange’s index theorem: if Zm′ is a subgroup of
Zm, then m/m′ is a positive integer).

Theorem 5. For every (m, n) /(m′, n) simulation for which m �= m′ there exists a short exact
sequence

1→ Zm′
ι→ Zm

ϑ→ Zσ → 1 (4)

where ι is an injective homomorphism and ϑ is a surmorphism.
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Proof. The injective homomorphism ι exists because Zm′ is a subgroup of Zm. Since every
subgroup of an Abelian group is a normal subgroup, there exists a surjective homomorphism
ϑ : Zm → Im ϑ such that Im ι = ker ϑ and Im ϑ ≈ Zm/Zm′ . But Zm/Zm′ ≈ Zσ because the
homomorphic image of a cyclic group is also a cyclic group and Lagrange’s index theorem

requires that |Im ϑ | = σ (a positive integer). The sequence Zm′
ι→ Zm

ϑ→ Zσ is exact at
Zm because Im ι = ker ϑ . The attachment of homomorphisms 1→ Zm′ and Zσ → 1 to this
sequence extends the exactness to Zm′ and Zσ , respectively. �

Observe that the quotient group Zm/Zm′ ≈ Zσ in short exact sequence (4) defines a (σ, n)-
FCQSM quotient machine when m �= m′. Such a quotient machine is called the σ -machine
induced by the simulation.

Corollary 6. Every (m, n) /(m′, n) simulation for which m �= m′ induces a σ -machine.

Proof. This is a direct consequence of theorem 5. �

An (m, n) /(m′, n) simulation for which m �= m′ splits if, and only if, its short exact
sequence (4) splits, i.e. there exists a homomorphism ψ : Zσ → Zm such that ϑ ◦ ψ = 1σ ,
where 1σ : Zσ → Zσ is the identity isomorphism. When sequence (4) splits, then
Zm ≈ Zm′ ⊕ Zσ , where ⊕ denotes ‘direct sum of Abelian groups’. An (m, n)-FCQSM
which exhibits a split simulation is a split FCQSM. The following result identifies a condition
which enables FCQSMs to simulate their induced quotient machines.

Theorem 7. Every split FCQSM simulates an induced σ -machine.

Proof. Let M be an (m, n)-FCQSM. If M is a split machine, then it exhibits a split
simulation. Thus, short exact sequence (4) splits and Zm ≈ Zm′ ⊕ Zσ . This implies that
Zσ ≈ {1} ⊕ Zσ ⊂ Zm (where ⊂ means ‘is a subgroup of’ and 1 is the identity element for
Zm′ ). From theorem 4, M must simulate the machine defined by Zσ . The fact that this machine
is an induced σ -machine completes the proof. �

Thus, for a split simulation, there are two commutative diagrams of the form given by
diagram (2) which can be joined at their common covering p : S2n+1 → S2n+1/Zm to yield the
following single diagram:

S2n+1

q

↙ ↓p
s

↘
S2n+1/Zm′

r→ S2n+1/Zm
t← S2n+1/Zσ .

(5)

Lemma 8. Diagram (5) commutes.

Proof. For any x ∈ S2n+1, p (x) = r ◦q (x) andp (x) = t ◦s (x). Thus, r ◦q (x) = t ◦s (x). �

Indeed, such a commutative diagram exists for any two machines simulated by a FCQSM
(it is easy to see that similar more complicated commutative diagrams exist for any subset of
machines simulated by a FCQSM).

The next lemma guarantees the existence of FCQSMs which satisfy the condition specified
by theorem 7. Let ‖a, b‖ be the greatest common divisor of a and b.

Lemma 9. Any FCQSM defined by Zm for which m = m′σ such that σ �= 1 and ‖m′, σ‖ = 1
is a split FCQSM.
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Proof. Let M be a FCQSM defined by Zm with m = m′σ such that σ �= 1 and
‖m′, σ‖ = 1. Then (from the theory of finite cyclic groups) Zm ≈ Zm′σ ≈ Zm′ ⊕ Zσ so
that Zm′ ≈ Zm′ ⊕ {1} ⊂ Zm (where 1 is the identity element for Zσ ). Therefore, M exhibits an
(m, n) /(m′, n) simulation for which m �= m′ so that the associated short exact sequence (4)
exists with Im ι = Zm′⊕{1} and Im ϑ = Zσ ≈ Zm/Zm′ . Since exactness requires Im ι = ker ϑ ,
the homomorphismϑ in this sequence is such that its restrictionϑ ({1} ⊕ Zσ ) is an isomorphism
upon Zσ (here 1 is the identity element for Zm′ ). Let the isomorphism ω : {1} ⊕ Zσ → Zσ be
this restriction of homomorphism ϑ . Since Zσ ≈ {1} ⊕ Zσ ⊂ Zm (so that M simulates the
induced σ -machine), then choose the homomorphism ψ : Zσ → Zm to be ψ = ω−1. Clearly,
this choice yields ϑ ◦ψ = ϑ ◦ω−1 = 1σ and the short exact sequence splits. Thus, M exhibits
a split simulation and M is a split FCQSM. �

Recall that a normal series of a group G is a chain of normal subgroups

G ⊃ G′ ⊃ G′′ ⊃ · · · ⊃ 1

where the length λ of the series is the number of strict inclusions ‘⊃’ (here ‘X ⊃ Y ’ means
Y is a proper subgroup of X). The series is non-trivial if λ > 1. An (m1, n)-FCQSM has
a simulation series if Zm1 has a non-trivial normal series (every subgroup of Zm1 is normal)
and the simulation series is said to be defined by Zm1 ’s normal series. It is easy to see from
theorem 4 that if an (m1, n)-FCQSM has a simulation series defined by the normal series

Zm1 ⊃ Zm2 ⊃ · · · ⊃ Zmk
⊃ 1

then there is a commutative diagram given by

S2n+1

p1↙
p2↙ · · ·

pk↘
S2n+1/Zm1

r2← S2n+1/Zm2

r3← · · · rk← S2n+1/Zmk
.

Thus, each set ofmi states that comprise the cycles for the machine defined by Zmi
is partitioned

into smaller cycle sets of mj states by each machine defined by Zmj
, i + 1 � j � k, and the

greater j is the more refined the partition. The simulation ratio sequence associated with
this simulation series is the (k − 1)-tuple

(
m1
m2
, m2
m3
, . . . ,

mk−1

mk

)
. The (4, n) / (2, n) simulation

discussed above is a simple example of a simulation series where the normal series defined by
Z4 is

Z4 ⊃ Z2 ⊃ 1

and the simulation ratio sequence is the 1-tuple (2).
Note that any two machines in the simulation series defined by Zmj

and Zml
, 1 � j < l �

k, has a commutative diagram of the form of diagram (2) because r : S2n+1/Zml
→ S2n+1/Zmj

with r = rj+1 ◦rj+2 ◦· · ·◦rl is a covering such that pj = r ◦pl . Similarly, a diagram analogous
to that of diagram (5) also exists for a simulation series.

4. Dynamical and process symmetries for FCQSMs

This section is concerned with identifying algebraic representations for the dynamical and
process symmetries associated with FCQSMs. In particular, it is assumed that the ‘dynamics’
of an (m, n)-FCQSM are abstractly represented by the group Zm and that the ‘global result
of the associated processing performed by these dynamics’ is abstractly represented by the
covering p : S2n+1 → S2n+1/Zm. It is then reasonable to use the automorphisms of Zm and
the associated covering space automorphisms as distinct dynamical and process symmetries,
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respectively. The two groups generated by these automorphisms provide useful algebraic
descriptions of the dynamical and process symmetries for FCQSMs. The significance of their
inter-relationship is discussed in the next section within the context of a FCQSM symmetry
principle.

Consider first the dynamical symmetry and recall that a group automorphism for Zm is
an isomorphism β : Zm → Zm. Let each such isomorphism represent a distinct dynamical
symmetry for an (m, n)-FCQSM. The set of all such isomorphisms under the binary operation
of composition is the group of dynamical symmetries Aut(Zm) for the machine and |Aut (Zm)|
is its order. Although Aut(G) is not generally known for an arbitrary groupG, certain properties
for Aut(Zm) are well established.The fundamental properties of Aut(Zm) that are useful for
the discussions below are cited here for convenience as the following theorems:

Theorem 10. Aut (Zm) is an Abelian group of order φ (m), where φ is the Euler totient.

The Euler totient is defined as: φ (1) = 1 and for m > 1, then φ (m) is the number of
integers . such that 1 � . < m and ‖.,m‖ = 1.

Theorem 11. For m > 2, |Aut (Zm)| is never odd.

Theorem 12. If m = 2k , then Aut (Zm) ≈
{

1 when k = 1

Z2 when k = 2.

Theorem 13. If m is an odd prime, then Aut (Zm) ≈ Zm−1.

An automorphism for the covering p : S2n+1 → S2n+1/Zm is a homeomorphism
η : S2n+1 → S2n+1 such that the diagram

S2n+1 η−→ S2n+1

p ↘ ↙ p

S2n+1/Zm

commutes. Hence, η determines an immunity to change in the topological structure of
the covering and therefore represents a distinct symmetry for the covering. Let each such
homeomorphism represent a distinct process symmetry for the FCQSM associated with the
covering. The set of all such homeomorphisms under the binary operation of composition is
the group of process symmetries Cov(p) for the associated FCQSM and |Cov (p)| is its order.

Unlike the case for the group of dynamical symmetries, the group of process symmetries
can be determined directly from the general theory of covering spaces. It is well known from
covering space theory that if γ : X̃ → X is a covering such that X̃ is simply connected and
locally path connected, then Cov(γ ) ≈ π1 (X), where π1 (X) is the fundamental group for
the space X (the base point in X is suppressed in π1 (X) for notational simplicity). Since
p : S2n+1 → S2n+1/Zm is a covering and S2n+1 has these properties, then Cov (p) ≈ Zm

because—as can also be ascertained from covering space theory—π1
(
S2n+1/Zm

) ≈ Zm. The
next theorem is an immediate consequence of this.

Theorem 14. Every FCQSM simulates its group of process symmetries.

Proof. The assertion is true because Cov (p) ≈ Zm and every FCQSM simulates itself. �
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5. Symmetry principles for FCQSMs

Liberty is taken in this section to devise two versions of a FCQSM symmetry principle. The
simpler version which asserts that ‘a process is more symmetric than the dynamics which
performs it’ is the weak version of the principle. The more precise statement that ‘the group
of dynamical symmetries for a FCQSM is isomorphic to a subgroup of the group of process
symmetries for the processes produced by the FCQSM’ is the strong version of the principle.
Note that the weak version can be interpreted as a statement only about the relative cardinalities
of the sets of distinct dynamical and process symmetries. The strong version is a symmetry
conservation principle for FCQSMs which asserts that a faithful copy of the group of dynamical
symmetries is contained within the group of process symmetries. If a FCQSM adheres to the
weak (strong) version of the symmetry principle, then it is weakly (strongly) symmetric.

Since Cov(p) ≈ Zm, then |Cov (p)| = m. Also, from theorem 10, |Aut (Zm)| = φ (m) <

m for m � 2 so that the following order relation is true for any (m, n)-FCQSM:

|Aut (Zm)| < |Cov (p)| m � 2. (6)

Thus, the number of dynamical symmetries is always exceeded by the number of process
symmetries. This means that every (m, n)-FCQSM conforms to our weak version of the
symmetry principle and we have proven that:

Theorem 15. Every (m, n)-FCQSM is weakly symmetric.

An obvious consequence of this result is the fact that the group of dynamical symmetries
for a FCQSM is never isomorphic to its group of process symmetries.

Application of the strong version of the symmetry principle demands that a strongly
symmetric (m, n)-FCQSM satisfies the requirement

Aut (Zm) ≈ S ⊂ Cov (p) ≈ Zm (7)

(where ‘⊂’ means ‘is a subgroup of’). If Aut(Zm) ≈ 1 for some (m, n)-FCQSM M, then M
clearly satisfies requirement (7) and is therefore strongly symmetric. In this case, M is said
to be dynamically trivial. Otherwise, M is dynamically non-trivial.

Lemma 16. An (m, n)-FCQSM is dynamically trivial if, and only if, m = 2.

Proof. (⇒) Suppose an (m, n)-FCQSM is dynamically trivial. Then Aut(Zm) ≈ 1 and
|Aut (Zm)| = 1. This means that m � 2 because |Aut (Zm)| is never odd for m > 2
(theorem 11). Since there are no FCQSMs with m < 2, then m = 2. (⇐) Let m = 2.
Then, Aut(Z2) ≈ 1 (theorem 12) so that all (2, n)-FCQSMs are dynamically trivial. �

Provided that Aut(Zm) is not isomorphic to the trivial group, when requirement (7) prevails
Aut(Zm) must be isomorphic to a cyclic subgroup of Cov(p) of order φ (m) (theorem 10). In
this case, Aut(Zm) ≈ Zφ(m) defines a (φ (m) , n)-FCQSM which is simulated by the associated
(m, n)-FCQSM (theorem 4) with a simulation ratio defined by the group index

[Cov (p) : Aut (Zm)] ≡ |Cov (p)|
|Aut (Zm)| =

m

φ (m)
. (8)

This special machine defined by Aut(Zm) is referred to as the φ-machine associated with the
(m, n)-FCQSM and we have shown that:

Theorem 17. A dynamically non-trivial strongly symmetric FCQSM simulates its associated
φ-machine.
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Thus, the processing performed by strongly symmetric FCQSMs not only conserves
their dynamical symmetries, but also ‘geometrically registers’—or ‘coordinatizes’—these
symmetries as states in their process cycles. It is easy to see that the previously discussed
(4, n)-FCQSMs are dynamically non-trivial strongly symmetric machines. Dynamical non-
triviality follows from lemma 16. Since Aut(Z4) ≈ Zφ(4) = Z2 ⊂ Z4 ≈ Cov (p) (theorem 12
for k = 2), these machines are strongly symmetric and therefore simulate their associated
φ-machines. As discussed above, each of two pairs of states in every 4 state cycle of the
(4, n)-FCQSMs simulates (i.e. ‘geometrically registers’) the dynamical symmetry groups of
these machines.

When condition (7) is not satisfied for some FCQSM, then that FCQSM is clearly not
strongly symmetric and—by virtue of theorem 15—is said to be strictly weak. The next
theorem relates φ-machine simulation to strictly weak machines and is stated here for the sake
of completeness (since it follows directly from the contrapositive of theorem 17, it is stated
without proof).

Theorem 18. If a dynamically non-trivial FCQSM is not capable of simulating its associated
φ-machine, then it is strictly weak.

The existence of strictly weak machines is guaranteed by the following theorem.

Theorem 19. Every (m, n)-FCQSM for which m is odd is strictly weak.
Proof. If m is odd, then m > 2 so that |Aut (Zm)| is even (theorem 11) and does not evenly
divide m. Thus, Aut(Zm) cannot be isomorphic to a subgroup of Zm ≈ Cov (p) for the
covering p : S2n+1 → S2n+1/Zm and condition (7) cannot be satisfied. �

As an illustration of theorem 19, let m = 3 so that the cyclic group Z3 defines a (3, n)-
FCQSM with Cov(p) ≈ Z3. From theorem 13 when m = 3, Aut(Z3) ≈ Z2. Since
|Aut (Z3)| = 2 does not evenly divide 3, Aut(Z3) ≈ Z2 cannot be isomorphic to a subgroup of
Cov(p) ≈ Z3. Thus, all (3, n)-FCQSMs cannot simulate their φ-machines and are therefore
strictly weak, i.e. they are only weakly symmetric since |Aut (Z3)| = 2 < 3 = |Cov (p)|.

The results of this section clearly show that the implication

strong FCQSM symmetry⇒ weak FCQSM symmetry

is valid, but that—in general—its logical converse is not. Indeed, since strictly weak FCQSMs
exist, the set of strongly symmetric FCQSMs is properly contained in the set of all (weakly
symmetric) FCQSMs.

6. The processing complexity of FCQSMs

This section is concerned with the examination of two intuitively derived quantities which
measure the complexity of the processing performed by a FCQSM. The first of these is
the simulation complexity index 1m,n for an (m, n)-FCQSM. This index is a ‘capability
quantification’—i.e. it is the number of FCQSMs that can be simulated by an (m, n)-FCQSM-
and is defined as the number of distinct non-unit factors of the integer m (the subscript n is
retained for the sake of notational consistency). Clearly, 1m,n counts (up to isomorphism) the
number of non-trivial subgroups of Zm. For example, 110,n = 3 because the non-unit factors
of 10 are 10, 5, and 2 which correspond to the subgroups Z10, Z5, and Z2, respectively. These
groups define the machines that a (10, n)-FCQSM can simulate.

The larger the 1m,n value is for a FCQSM then the more complex the machine is (in the
sense of its total simulation capability). An (m, n)-FCQSM which is only (m, n) capable is
a simple FCQSM and 1m,n = 1 in this case. Such machines are identified by the following
theorem.
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Theorem 20. An (m, n)-FCQSM is simple if, and only if, m is prime.

Proof. (⇒) If M is a simple (m, n)-FCQSM, then Zm has no non-trivial proper subgroups
(or else M would be (m′, n) capable for m′ �= m) so that 1 and m are the only divisors of m
which yield a positive integer group index. Therefore, m is prime. (⇐) If m is prime, then
Zm has no non-trivial proper subgroups since 1 and m are the only divisors of m. Thus, M is
only (m, n) capable and is a simple FCQSM. �

Although it is not known how to calculate1m,n directly fromm, its value can be bounded by
recalling that the Euler totient counts the number of integers 1 � . < m such that ‖.,m‖ = 1.
This implies thatm−φ (m) is the maximum number of (non-unit) positive integers 1 < .′ � m

that could divide m so that

1m,n � m− φ (m) m � 2. (9)

The use of ‘�’ instead of ‘<’ in this inequality is easily shown to be valid by applying it to
simple (m, n)-FCQSMs. For this case, it is required by the last theorem that m be prime.
Then φ (m) = m − 1 so that inequality (9) yields 1m,n = 1 (since its value can never be
non-positive). The order relation stated as the following lemma will be useful for providing a
refined statement of the weak version of the FCQSM symmetry principle.

Lemma 21. |Aut (Zm)| � m−1m,n < |Cov (p)|.
Proof. Rearranging inequality (9) and using the fact that |Aut (Zm)| = φ (m) yields

|Aut (Zm)| � m−1m,n.

Also, since 1 � 1m,n < m, then m−1m,n < m = |Cov (p)|. �

In addition to1m,n, the algebraic properties of the topologies of the spaces in the covering
p : S2n+1 → S2n+1/Zm can be used to define the induced topological complexity index 2m,n for
the (m, n)-FCQSM associated with the covering. This simple index provides a quantification
of the topological change induced in S2n+1 by the action of the associated (m, n)-FCQSM and
is defined as the sum

2m,n =
∞∑
j=1

{∣∣πj (S2n+1/Zm

)∣∣− ∣∣πj (S2n+1
)∣∣}. (10)

Here πj (X) is the j th homotopy group for the topological space X ( note again that the
basepoint inX is suppressed for notational simplicity) and

∣∣πj (X)∣∣ is its order. Becauseπj (X)
is an algebraic statement about the (j + 1)-dimensional ‘holes’ in spaceX, then—in a sense—∑∞

j=1

∣∣πj (X)∣∣ is a quantification of the topological complexity of X. Therefore, intuitively,
2m,n is the difference between the complexity induced by the action of an (m, n)-FCQSM (as
reflected by the topology of the ‘processed’ base space S2n+1/Zm) and the complexity of the
‘unprocessed’ space of states S2n+1.

Since every covering space is a locally trivial bundle with discrete fibre, it is also a weak
fibration. Therefore, the following long exact homotopy sequence exists for every (m, n)-
FCQSM:

· · · → πj+1
(
S2n+1/Zm

)→ πj (F )→ πj
(
S2n+1

)→ πj
(
S2n+1/Zm

)→ πj−1 (F )→ · · ·
(11)

where the arrows denote group homomorphisms. As before, the basepoint has been suppressed
and F is the fibre for any basepoint (because all fibres are homeomorphic discrete spaces).
This long exact sequence can be used to evaluate equation (10) by first noting that since F
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is discrete, then, for j � 1, πj (F ) is isomorphic to the trivial group, denoted πj (F ) ≈ 1.
Substituting this fact into sequence (11) yields the exact sequences

1→ πj
(
S2n+1

)→ πj
(
S2n+1/Zm

)→ 1 j � 2.

The exactness of these sequences implies that πj
(
S2n+1

) ≈ πj
(
S2n+1/Zm

)
when j � 2. Since

isomorphic groups have equal orders, equation (10) reduces to an expression involving only
the fundamental groups of the spaces in the covering:

2m,n =
∣∣π1

(
S2n+1/Zm

)∣∣− ∣∣π1
(
S2n+1

)∣∣.
Since π1

(
S2n+1

) ≈ 1 for n � 1 and π1
(
S2n+1/Zm

) ≈ Zm (as noted above), then the last
equation gives the final simple result that

2m,n = m− 1. (12)

Note that the right-hand side of this equation is independent of the Hilbert space dimension
(the subscript n is retained on the left-hand side for the sake of notational consistency) and that
the induced topological complexity increases linearly only with the number of distinct statesm
in a process cycle. Also, observe from equation (12) that the induced topological complexity
index is always positively valued for all (m, n)-FCQSMs because m � 2 so that 2m,n � 1.

The following lemma relates the induced topological complexity index to strictly weak
FCQSMs.

Lemma 22. Every dynamically non-trivial (m, n)-FCQSM for which |Aut (Zm)| = 2m,n is
strictly weak.

Proof. Let M be a dynamically non-trivial (m, n)-FCQSM such that |Aut (Zm)| = 2m,n.
Since m > 2, then |Aut (Zm)| = 2m,n = m− 1 is even (theorem 11). Thus, m is odd so that
M is strictly weak (theorem 19). �

A useful relationship between simple FCQSMs and the topological complexity index is
identified in the next lemma.

Lemma 23. |Aut(Zm)| = 2m,n if, and only if, m is prime.

Proof. (⇒)Let |Aut (Zm)| = 2m,n = m−1, wherem � 2. Thus,φ (m) = m−1 (theorem 10).
This implies that ‖.,m‖ = 1 for every 1 � . < m so that m must be a prime. (⇐) Let m
be a prime. If m = 2, then |Aut (Z2)| = 2 − 1 = 1 = 22,n (theorem 12). If m > 2, then
|Aut (Zm)| = |Zm−1| = m− 1 = 2m,n (theorem 13). �

These last two results show that not only are all dynamically non-trivial simple FCQSMs
strictly weak, but also that simple FCQSMs are the only class of FCQSMs which satisfy
|Aut (Zm)| = 2m,n. In addition, lemmas 23 and 21 can be used to refine the weak version of
the FCQSM symmetry principle by including the simulation complexity index and the induced
topological complexity index as achievable maximum upper bounds (relative to m) upon the
number of distinct dynamical symmetries. This refinement is stated as the final theorem of
this paper.

Theorem 24 (Refined weak symmetry principle for FCQSMs). Every (m, n)-FCQSM con-
forms to the ordering

|Aut (Zm)| � m−1m,n � 2m,n < |Cov (p)| .
Strict equalities hold if, and only if, the machine is simple.
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Proof. Since 2m,n = m− 1 and |Cov (p)| = m, then weak symmetry (inequality (6)) requires
that |Aut (Zm)| < 2m,n + 1 or |Aut (Zm)| − 1 < 2m,n so that

|Aut (Zm)| − 1 < 2m,n < |Cov (p)| m � 2.

This means that: (i) |Aut (Zm)| < 2m,n; (ii) |Aut (Zm)| = 2m,n; or (iii) 2m,n < |Aut (Zm)| �
|Cov (p)|. Possibility (iii) cannot be true because |Cov (p)| − 2m,n = 1 and weak symmetry
requires |Aut (Zm)| < |Cov (p)|. The fact that item (i) is possible (because φ (m) < m − 1
can be true) and item (ii) is possible (lemma 23) yields the ordering relation

|Aut (Zm)| � 2m,n < |Cov (p)| .
Observing that 1 � 1m,n < m implies that m−1m,n � 2m,n allows lemma 21 to be used to
form the desired ordering. Consider now the following proof of the remaining bi-conditional
statement: (⇒) Let |Aut (Zm)| = m − 1m,n = 2m,n = m − 1. This implies that m is prime
(lemma 23) and that1m,n = 1. Thus, from theorem 20 and the definition of1m,n the associated
FCQSM must be simple. (⇐) Let the machine be simple. Then—by definition—1m,n = 1
andmmust be prime (theorem 20) so thatm−1m,n = m−1 = 2m,n. The fact that theorem 23
requires |Aut (Zm)| = 2m,n completes the proof. �

7. Concluding remarks

This research has investigated the properties of FCQSMs from an algebraic topological
perspective. It has demonstrated that a covering space characterization for all such machines
can be obtained using this approach and that this characterization is useful for defining
and understanding the notion of FCQSM simulation. This perspective also enabled the
establishment of: (1) an order relation which bounds the number of distinct dynamical
symmetries for a FCQSM by the values of two complexity indices which are determined
entirely by the group structure and topological properties associated with the machine; (2) a
symmetry conservation principle for FCQSMs; and (3) a relationship between the violation of
this symmetry conservation principle and the two machine complexity indices.

This paper suggests additional theoretical questions related to quantum information
processing that might be studied from a similar algebraic topological perspective. These
questions include the following: (i) what are the properties of finite QSMs described by other
group actions upon odd-dimensional spheres?; (ii) what are the properties of infinite cyclic
QSMs?; (iii) is the categorical notion of ‘free Abelian group’ related to universal quantum
computation?; (iv) is there an analogous algebraic topological representation for universal
quantum computation?; and—if so—(v) can it be shown that all classical Turing machines can
be embedded in this representation?
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